Ever wonder what's the mathematics behind face recognition on most gadgets like digital camera and smartphones? Well for most part it has something to do with statistics. One statistical tool that is capable of doing such feature is the Principal Component Analysis (PCA). In this post, however, we will not do (sorry to disappoint you) face recognition as we reserve this for future post while I'm still doing research on it. Instead, we go through its basic concept and use it for data reduction on spectral bands of the image using R.

###
Let's view it mathematically

Consider a line $L$ in a parametric form described as a set of all vectors $k\cdot\mathbf{u}+\mathbf{v}$ parameterized by $k\in \mathbb{R}$, where $\mathbf{v}$ is a vector orthogonal to a

normalized vector $\mathbf{u}$. Below is the graphical equivalent of the statement: