A family of pdfs or pmfs $\{g(t|\theta):\theta\in\Theta\}$ for a univariate random variable $T$ with real-valued parameter $\theta$ has a monotone likelihood ratio (MLR) if, for every $\theta_2>\theta_1$, $g(t|\theta_2)/g(t|\theta_1)$ is a monotone (nonincreasing or nondecreasing) function of $t$ on $\{t:g(t|\theta_1)>0\;\text{or}\;g(t|\theta_2)>0\}$. Note that $c/0$ is defined as $\infty$ if $0< c$.
Consider testing $H_0:\theta\leq \theta_0$ versus $H_1:\theta>\theta_0$. Suppose that $T$ is a sufficient statistic for $\theta$ and the family of pdfs or pmfs $\{g(t|\theta):\theta\in\Theta\}$ of $T$ has an MLR. Then for any $t_0$, the test that rejects $H_0$ if and only if $T >t_0$ is a UMP level $\alpha$ test, where $\alpha=P_{\theta_0}(T >t_0)$.
Example 1

To better understand the theorem, consider a single observation, $X$, from $\mathrm{n}(\theta,1)$, and test the following hypotheses: $$ H_0:\theta\leq \theta_0\quad\mathrm{versus}\quad H_1:\theta>\theta_0. …

To better understand the theorem, consider a single observation, $X$, from $\mathrm{n}(\theta,1)$, and test the following hypotheses: $$ H_0:\theta\leq \theta_0\quad\mathrm{versus}\quad H_1:\theta>\theta_0. …