Let's solve some theoretical problem in probability, specifically on convergence. The problem below is originally from Exercise 5.42 of Casella and Berger (2001). And I just want to share my solution on this. If there is an incorrect argument below, I would be happy if you could point that to me.
Problem
Let X_1, X_2,\cdots be iid (independent and identically distributed) and X_{(n)}=\max_{1\leq i\leq n}x_i.- If x_i\sim beta(1,\beta), find a value of \nu so that n^{\nu}(1-X_{(n)}) converges in distribution;
- If x_i\sim exponential(1), find a sequence a_n so that X_{(n)}-a_n converges in distribution.
Solution
- Let Y_n=n^{\nu}(1-X_{(n)}), we say that Y_n\rightarrow Y in distribution. If
\lim_{n\rightarrow \infty}F_{Y_n}(y)=F_Y(y).Then, \begin{aligned} \lim_{n\rightarrow\infty}F_{Y_n}(y)&=\lim_{n\rightarrow\infty}P(Y_n\leq y)=\lim_{n\rightarrow\infty}P(n^{\nu}(1-X_{(n)})\leq y)\\ &=\lim_{n\rightarrow\infty}P\left(1-X_{(n)}\leq \frac{y}{n^{\nu}}\right)\\ &=\lim_{n\rightarrow\infty}P\left(-X_{(n)}\leq \frac{y}{n^{\nu}}-1\right)=\lim_{n\rightarrow\infty}\left[1-P\left(-X_{(n)}> \frac{y}{n^{\nu}}-1\right)\right]\\ &=\lim_{n\rightarrow\infty}\left[1-P\left(\max\{X_1,X_2,\cdots,X_n\}< 1-\frac{y}{n^{\nu}}\right)\right]\\ &=\lim_{n\rightarrow\infty}\left[1-P\left(X_1< 1-\frac{y}{n^{\nu}},X_2< 1-\frac{y}{n^{\nu}},\cdots,X_n< 1-\frac{y}{n^{\nu}}\right)\right]\\ &=\lim_{n\rightarrow\infty}\left[1-P\left(X_1< 1-\frac{y}{n^{\nu}}\right)^n\right],\;\text{since}\;X_i's\;\text{are iid.} \end{aligned}And because x_i\sim beta(1,\beta), the density is f_{X_1}(x)=\begin{cases} \beta(1-x)^{\beta - 1}&\beta>0, 0\leq x\leq 1\\ 0,&\mathrm{Otherwise} \end{cases}Implies, \begin{aligned} \lim_{n\to \infty}P(Y_n\leq y)&=\lim_{n\to \infty}\left\{1-\left[\int_0^{1-\frac{y}{n^{\nu}}}\beta(1-t)^{\beta-1}\,\mathrm{d}t\right]^n\right\}\\ &=\lim_{n\to \infty}\left\{1-\left[-\int_1^{\frac{y}{n^{\nu}}}\beta u^{\beta-1}\,\mathrm{d}u\right]^{n}\right\}\\ &=\lim_{n\to \infty}\left\{1-\left[-\beta\frac{u^{\beta}}{\beta}\bigg|_{u=1}^{u=\frac{y}{n^{\nu}}}\right]^{n}\right\}\\ &=1-\lim_{n\to \infty}\left[1-\left(\frac{y}{n^{\nu}}\right)^{\beta}\right]^{n} \end{aligned}We can simplify the limit if \nu=\frac{1}{\beta}, that is \lim_{n\to\infty}P(Y_n\leq y)=1-\lim_{n\to\infty}\left[1-\frac{y^{\beta}}{n}\right]^{n}=1-e^{-y^{\beta}}To confirm this in Python, run the following code using the sympy module
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersimport sympy as sy from sympy import oo b, y, n = sy.symbols("b y n") print 1 - sy.limit((1 - (y ** b) / n) ** n, n, oo)
\hspace{12.5cm}\blacksquare -
\begin{aligned}
P(X_{(n)}-a_{n}\leq y) &= P(X_{(n)}\leq y + a_n)=P(\max\{X_1,X_2,\cdots,X_n\}\leq y+a_n)\\
&=P(X_1\leq y+a_n,X_2\leq y+a_n,\cdots,X_n\leq y+a_n)\\
&=P(X_1\leq y+a_n)^n,\;\text{since}\;x_i's\;\text{are iid}\\
&=\left[\int_{-\infty}^{y+a_n}f_{X_1}(t)\,\mathrm{d}t\right]^n
\end{aligned}
Since X_i\sim exponential(1), then the density is f_{X_1}=\begin{cases} e^{-x},&0\leq x\leq \infty\\ 0,&\mathrm{otherwise} \end{cases}So that, \begin{aligned} P(X_{(n)}-a_{n}\leq y)&=\left[\int_{0}^{y+a_n}e^{-t}\,\mathrm{d}t\right]=\left\{-\left[e^{-(y+a_n)}-1\right]\right\}^n\\ &=\left[1-e^{-(y+a_n)}\right]^n \end{aligned}If we let Y_n=X_{(n)}-a_n, then we say that Y_n\rightarrow Y in distribution if \lim_{n\to\infty}P(Y_n\leq y)=P(Y\leq y)Therefore, \begin{aligned} \lim_{n\to\infty}P(Y_n\leq y) &= \lim_{n\to\infty}P(X_{(n)}-a_n\leq y)=\lim_{n\to \infty}\left[1-e^{-y-a_n}\right]^n\\ &=\lim_{n\to\infty}\left[1-\frac{e^{-y}}{e^{a_n}}\right]^n \end{aligned}We can simplify the limit if a_n=\log n, that is \lim_{n\to\infty}\left[1-\frac{e^{-y}}{e^{\log n}}\right]^n=\lim_{n\to\infty}\left[1-\frac{e^{-y}}{n}\right]^n=e^{-e^{-y}}Check this in Python by running the following code,
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersimport sympy as sy from sympy import oo y, n = sy.symbols("y n") print sy.limit((1 - sy.exp(-y) / sy.exp(sy.log(n))) ** n, n, oo)
\hspace{12.5cm}\blacksquare