More proving, still on Real Analysis. This is my solution and if you find any errors, do let me know.
Problems
Lebesgue Measure: Let \mu be set function defined for all set in \sigma-algebra \mathscr{F} with values in [0,\infty]. Assume \mu is countably additive over countable disjoint collections of sets in \mathscr{F}.- Prove that if A and B are two sets in \mathscr{F}, with A\subseteq B, then \mu(A)\leq \mu(B). This property is called monotonicity.
- Prove that if there is a set A in the collection \mathscr{F} for which \mu(A)<\infty, then \mu(\emptyset)=0.
- Let \{E_{k}\}_{k=1}^{\infty} be a countable collection of sets in \mathscr{F}. Prove that \mu\left(\displaystyle\bigcup_{k=1}^{\infty}E_{k}\right)\leq \displaystyle\sum_{k=1}^{\infty}\mu(E_k)
- By using property of outer measure, prove that the interval [0,1] is not countable.
- Let A be the set of irrational numbers in the interval [0,1]. Prove that \mu^{*}(A)=1.
- Let B be the set of rational numbers in the interval [0,1], and let \{I_k\}_{k=1}^{n} be finite collection of open intervals that covers B. Prove that \displaystyle\sum_{k=1}^{n}\mu^{*}(I_k)\geq 1.
- Prove that if \mu^{*}(A)=0, then \mu^{*}(A\cup B)=\mu^{*}(B).
Solutions
- Proof. If A\subseteq B, then B= A\cup (B\cap A^c)\Rightarrow B= A\cup (B\backslash A). Thus,
\begin{equation}\nonumber
\begin{aligned}
\mu(B)&= \mu(A\cup (B\backslash A))\\
&= \mu(A)+\mu(B\backslash A)\\
&(\text{since}\;\mu\;\text{is countably additive on disjoint sets})
\end{aligned}
\end{equation}We can see that \mu(B)\geq \mu(A) since \mu(B\backslash A) > 0. \hspace{13.5cm}\blacksquare
- Proof. For any set A in \mathscr{F} such that \mu(A)<\infty, A\cup \emptyset = A. Thus,
\begin{equation}\nonumber
\begin{aligned}
\mu(A)&=\mu(A\cup \emptyset)=\mu(A)-\mu(\emptyset)\\
0&=\mu(\emptyset)
\end{aligned}
\end{equation}\hspace{13.5cm}\blacksquare
- Proof. We define a sequence \{A_n\}_{n=1}^{\infty}\subseteq\mathscr{F}, such that A_1=E_1 and
\begin{equation}\nonumber
A_n = E_n \backslash \bigcup_{k=1}^{n-1}E_k,\;\text{for}\;n>1
\end{equation}It is easy to see that A_n is pairwise disjoint, and \bigcup_{n=1}^{\infty}A_n=\bigcup_{k=1}^{\infty}E_k, also \{A_n\}\subseteq \{E_k\}. Thus by countably additive and monotonicity property of \mu, we have \begin{equation}\nonumber \begin{aligned} \mu\left(\bigcup_{k=1}^{\infty}E_k\right)&=\mu\left(\bigcup_{n=1}^{\infty}A_n\right)\\ &=\sum_{n=1}^{\infty}\mu(A_n)\\ &\leq \sum_{k=1}^{\infty}\mu(E_k)\;(\text{by monotonicty}). \end{aligned} \end{equation}\hspace{13.5cm}\blacksquare
- Proof. Let's prove this by contradiction, assume the interval [0,1] is countable. Then we need to show that \mu^{*}([0,1])=0 for it to be countable. Now consider \varepsilon >0, such that I = \{[\varepsilon - 0, 1 + \varepsilon]\} covers [0,1]. Then by property of outer measure that says, \mu^{*}([a,b]) is the length of [a,b], we have
\begin{equation}\nonumber
\mu^{*}([0,1]) = \inf\,\{\ell (I)\} = (1+\varepsilon) - (0-\varepsilon) = 1+2\varepsilon
\end{equation}This holds for each \varepsilon >0, thus \mu^{*}([0,1])=1 which is a contradiction.\hspace{2.13cm}\blacksquare
- Proof. If A=\{\mathbb{Q}^c\cap [0,1]\} is the set of irrational numbers in the interval [0,1], then A^c=\{\mathbb{Q}\cap [0,1]\} is the set of rational numbers in the interval [0,1]. Now consider the following,
\begin{equation}\nonumber
\begin{aligned}
\mu^{*}([0,1])&=\mu^{*}(A)+\mu^{*}(A^{c})\\
\mu^{*}(A)&=\mu^{*}([0,1]) - \mu^{*}(A^{c})\\
&=1 -\mu^{*}(A^{c})
\end{aligned}
\end{equation}We need to show that \mu^{*}(A^{c}) has outer measure zero. To do that, let a_1,a_2,\cdots\in A^{c}. And for \varepsilon > 0, \exists \{I_n\} such that \{I_n\} = \{(a_n - \frac{\varepsilon}{2^{k+1}}, a_n + \frac{\varepsilon}{2^{k+1}})\}. Thus, \bigcup_{n=1}^{\infty}I_n covers A^{c}, and by outer measure we have, \begin{equation}\nonumber \begin{aligned} \mu^{*}(A^c)& \leq \inf\left\{\sum_{n=1}^{\infty}\ell(I_n)\right\}\\ &\leq \inf\left\{\sum_{n=1}^{\infty}\left(a_n + \frac{\varepsilon}{2^{k+1}} - a_n + \frac{\varepsilon}{2^{k+1}}\right) \right\}\\ &\leq \inf\left\{\sum_{n=1}^{\infty}\left(\frac{\varepsilon}{2^{k}}\right) \right\}\\ &\leq \varepsilon \end{aligned} \end{equation}Since this hold for each \varepsilon then \mu^{*}(A^c)=0. Thus, \mu^{*}(A)=1-0=1.
\hspace{13.5cm}\blacksquare - Proof. The rational numbers are dense in \mathbb{R}. Thus, any point in the interval [0,1] may it be irrational numbers will always be a point of closure of B, that is \bar{B}=[0,1]. Since B\subseteq \bigcup_{k=1}^{\infty}I_k, then by closure property, \bar{B}\subseteq \overline{\bigcup_{k=1}^{\infty}I_k}, which is \bar{B}\subseteq \bigcup_{k=1}^{\infty}\bar{I}_k. Thus by definition of outer measure we have,
\begin{equation}\nonumber
\begin{aligned}
1=\mu^{*}([0,1])&=\mu^{*}(\bar{B})\leq \mu^{*}\left(\bigcup_{k=1}^{\infty}\bar{I}_k\right)\\
&\leq \sum_{k=1}^{\infty}\mu^{*}(\bar{I}_k)=\sum_{k=1}^{\infty}\mu^{*}(I_k).
\end{aligned}
\end{equation}Thus, \begin{equation}\nonumber\sum_{k=1}^{\infty}\mu^{*}(I_k)\geq 1 \end{equation}\hspace{13.5cm}\blacksquare
- Proof. We need to show that,
\begin{equation}\nonumber
\begin{aligned}
&\mu^{*}(A\cup B)\leq \mu^{*}(B)\\
&\mu^{*}(B)\leq \mu^{*}(A\cup B)
\end{aligned}
\end{equation}
- From the definition of outer measure,
\begin{equation}
\nonumber
\begin{aligned}
\mu^{*}(A\cup B)&\leq \mu^{*}(A)+\mu^{*}(B)\\
&\leq \mu^{*}(B).
\end{aligned}
\end{equation}
- Since B\subseteq A\cup B, then from property of outer measure that if A\subseteq B, then \mu^{*}(A)\leq \mu^{*}(B). Hence,
\begin{equation}\nonumber
\mu^{*}(B)\leq \mu^{*}(A\cup B)
\end{equation}
- From the definition of outer measure,
\begin{equation}
\nonumber
\begin{aligned}
\mu^{*}(A\cup B)&\leq \mu^{*}(A)+\mu^{*}(B)\\
&\leq \mu^{*}(B).
\end{aligned}
\end{equation}