Another proving problem, this time on Real Analysis.
Problem
- Prove that the Lebesgue outer measure is translation invariant. (Use the property that, the length of an interval l is translation invariant.)
Solution
- Proof. The outer measure is translation invariant if for y\in \mathbb{R},
\begin{equation}\nonumber
\mu^{*}(A)=\mu^{*}(A+y)
\end{equation}Hence, we need to show that Case 1: \mu^{*}(A)\leq \mu^{*}(A+y); and Case 2: \mu^{*}(A+y)\leq \mu^{*}(A).
Case 1: Consider a countable collection \{I_n\}_{n=1}^{\infty}, and let \begin{equation}\nonumber W = \left\{\displaystyle\sum_{n=1}^{\infty}l(I_n)\mid A\subseteq\displaystyle\bigcup_{n=1}^{\infty}I_n\right\} \end{equation}Then the outer measure of A is, \begin{equation}\nonumber \mu^{*}(A)=\inf\,\{W\}. \end{equation}Now consider x\in W, then there is a particular collection \hat{I}_n that covers A, such that \displaystyle\sum_{n=1}^{\infty}l(\hat{I}_n)=x, and that of course is the \inf\,\{W\}. Further, we see that the collection \{\hat{I}_n+y\} covers A+y, that is, A+y\subseteq \displaystyle\bigcup_{n=1}^{\infty}\{\hat{I}_n + y\}. And from this, we obtain the following outer measure: \begin{equation}\nonumber \begin{aligned} \mu^{*}(A+y)&=\displaystyle\sum_{n=1}^{\infty}l(\hat{I}_n+y)\\ &=\displaystyle\sum_{n=1}^{\infty}l(\hat{I}_n),\;\text{since}\;l\;\text{is translation invariant}.\\ &=x. \end{aligned} \end{equation}And therefore, W\subseteq\left\{\displaystyle\sum_{n=1}^{\infty}I_n\mid A+y\subseteq \displaystyle\bigcup_{n=1}^{\infty}I_n\right\}, implying \mu^{*}(A)\leq \mu^{*}(A+y).
Case 2: Using the same flow of reasoning as in Case 1, consider a countable collection \{I_n\}_{n=1}^{\infty}, and let \begin{equation}\nonumber V = \left\{\displaystyle\sum_{n=1}^{\infty}l(I_n)\mid A+y\subseteq\displaystyle\bigcup_{n=1}^{\infty}I_n\right\} \end{equation}Then the outer measure of A is, \begin{equation}\nonumber \mu^{*}(A+y)=\inf\,\{V\}. \end{equation}Now consider x\in V, then there is a particular collection \hat{I}_n that covers A+y, such that \displaystyle\sum_{n=1}^{\infty}l(\hat{I}_n)=x, and that of course is the \inf\,\{V\}. Further, we see that the collection \{\hat{I}_n+(-y)\} covers A, that is, A\subseteq \displaystyle\bigcup_{n=1}^{\infty}\{\hat{I}_n + (-y)\}. And from this, we obtain the following outer measure: \begin{equation}\nonumber \begin{aligned} \mu^{*}(A)&=\displaystyle\sum_{n=1}^{\infty}l(\hat{I}_n+(-y))\\ &=\displaystyle\sum_{n=1}^{\infty}l(\hat{I}_n),\;\text{since}\;l\;\text{is translation invariant}.\\ &=x. \end{aligned} \end{equation}And therefore, V\subseteq\left\{\displaystyle\sum_{n=1}^{\infty}I_n\mid A\subseteq \displaystyle\bigcup_{n=1}^{\infty}I_n\right\}, implying \mu^{*}(A+y)\leq \mu^{*}(A).
Since we have shown both cases, then \mu^{*}(A)=\mu^{*}(A+y).\hspace{3.7cm}\blacksquare